International Tables for X-ray Crystallography (1962). Vol. III. Birmingham: Kynoch Press.

Johnson, C. K. (1965). Oak Ridge National Laboratory Report ORNL-3794.
Lin, G. H. -Y., Sundaralingam, M. \& Arora, S. K. (1971). J. Amer. Chem. Soc. 93, 1235-1241.

Pal, B. C., Uziel, M., Doherty, D. G. \& Cohn, W. E. (1969). J. Amer. Chem. Soc. 91, 3634-3638.

Saenger, W. \& Scheit, K. H. (1970). J. Mol. Biol. 50, 153-169.
Saenger, W. \& Suck, D. (1971a). J. Mol. Biol. 60, 87-99.
Saenger, W. \& Suck, D. (1971b). Acta Cryst. B27, 11781186.

Stewart, R. F., Davidson, E. R. \& Simpson, W. T. (1965). J. Chem. Phys. 42, 3175-3183.

Wel, C. H. (1971). Acta Cryst. B27, 1523.

Hydrogen Bond Studies. CIII.* Monomethylammonium Hydrogen Oxalate: an X-ray Structure Determination

By John O.Thomas
Institute of Chemistry, Uppsala University, Box 531, S-751 21 Uppsala, Sweden

(Received 19 February 1975; accepted 19 March 1975)

Abstract

Monoclinic, $P 2_{1} / n, a=9 \cdot 143$ (1), $b=8 \cdot 248$ (1), $c=7.548$ (1) $\AA, \beta=96.30(1)^{\circ}, V=565.72 \AA^{3}$ at $25^{\circ} \mathrm{C}$, $\mathrm{CH}_{3} \mathrm{NH}_{3} \mathrm{HC}_{2} \mathrm{O}_{4}, Z=4, D_{x}=1.420 \mathrm{~g} \mathrm{~cm}^{-3}$. Singlecrystal four-circle diffractometer data. The $\mathrm{HC}_{2} \mathrm{O}_{4}^{-}$ ions are linked by 2.515 (2) $\AA \mathrm{O}-\mathrm{H} \cdots \mathrm{O}$ bonds to form infinite chains along [101]. Transverse linkage between these chains is via a complex network of $\mathrm{N}-\mathrm{H} \cdots \mathrm{O}$ bonds from the $\mathrm{CH}_{3} \mathrm{NH}_{3}^{+}$cation. Dihedral twist between COO planes within the oxalate group is $1 \cdot 1(1)^{\circ}$.

Introduction. $\mathrm{CH}_{3} \mathrm{NH}_{3} \mathrm{HC}_{2} \mathrm{O}_{4}$ was prepared by bubbling air through a mixture of $\mathrm{CH}_{3} \mathrm{NH}_{3} \mathrm{Cl}$ and excess NaOH , and slowly adding water. Crystallization ensued on passing the resulting gas (an air- $\mathrm{CH}_{3} \mathrm{NH}_{2}$ mixture) through a concentrated solution of oxalic acid in alcohol. Recrystallization from 80% ethanol gave flat rectangular crystals. The crystals sublime above $150^{\circ} \mathrm{C}$ and melt while decomposing at $\sim 180^{\circ} \mathrm{C}$. The crystal selected for data collection measured $0.30 \times 0.22 \times 0.08$ mm . A preliminary film investigation indicated absences $h 0 l$ for $h+l$ odd and $0 k 0$ for k odd (β angle for $P 2_{1} / c$ was $\sim 126^{\circ}$). Cell parameters were refined from 34θ values measured on a GuinierHägg XDC-700 powder camera calibrated with silicon. Intensity data were collected on a Stoe-Philips fourcircle X-ray diffractometer with graphite monochromatized Mo $K \alpha$ radiation [for further details see Thomas (1972)]. In all, 1754 reflexions were measured out to $\sin \theta / \lambda=0.593 \quad \AA^{-1}$. After removal of systematic absences and averaging of $h k l$ and $h \bar{k} l$ reflexions, 991 reflexions remained of which 728 were greater than 2σ and used in the refinements. An absorption correction ($\mu=1.43 \mathrm{~cm}^{-1}$) was made, making use of an explicit description of the crystal shape and size.

[^0]The structure was solved by direct methods following the iterative procedure programmed by Long (1965). Hydrogen atoms were subsequently located unambiguously in a difference synthesis. The weighting function used in the full-matrix least-squares refinement (based on F) was: $w=1 / \sigma^{2}(F)$; where $\sigma^{2}(F)=\sigma^{2}\left(F^{2}\right) / 4 F^{2}$ and $\sigma^{2}\left(F^{2}\right)=\sigma_{\text {count }}^{2}\left(F^{2}\right)+\left(0.05 F^{2}\right)^{2}$.
The refined value of g, the isotropic extinction parameter (Coppens \& Hamilton, 1970), was 4630 (1770). Final $R(F)$ and $R_{w}(F)$ values were 0.044 and 0.056 , respectively, for 102 refined parameters. Atomic scattering factors for C, N and O were those of Hanson, Herman, Lea \& Skillman (1964), and for H those of Stewart, Davidson \& Simpson (1965).
Final positional and thermal parameters are given in Tables 1 and $2 . \dagger$

Discussion. Hydrogen oxalate ions exhibit a strong tendency to form infinite chains in crystal structures. The internal geometry of the ion would nevertheless appear to be readily distortable. The dihedral angle between the COO planes has been found to be as large as $12 \cdot 9^{\circ}$ [in $\mathrm{NaHC}_{2} \mathrm{O}_{4} \cdot \mathrm{H}_{2} \mathrm{O}$: Tellgren \& Olovsson (1971)]; significant variations have also been found in the $\mathrm{C}-\mathrm{O}$ lengths [see, for example, $\mathrm{N}_{2} \mathrm{H}_{5} \mathrm{HC}_{2} \mathrm{O}_{4}$ (Ahmed, Liminga \& Olovsson, 1968), $\mathrm{KHC}_{2} \mathrm{O}_{4}$ (Einspahr, Marsh \& Donohue, 1972) and $\mathrm{LiHC}_{2} \mathrm{O}_{4} \cdot \mathrm{H}_{2} \mathrm{O}$ (Thomas, 1972)]. The geometry of the $\mathrm{HC}_{2} \mathrm{O}_{4}^{-}$ion may thus be expected to respond sensitively to changes in the hydrogen-bond environment of the ion chain.

[^1]Table 1. Atomic coordinates $\left(\times 10^{5}\right)$ for non-hydrogen atoms and $\left(\times 10^{3}\right)$ hydrogen atoms

The isotropic temperature factors for the hydrogen atoms are also given.

	x	y	z	$B\left(\AA^{2}\right)$
$\mathrm{O}(1)$	$9215(17)$	$30463(25)$	$34334(23)$	
$\mathrm{O}(2)$	$14195(16)$	$21366(25)$	$8034(22)$	
$\mathrm{O}(3)$	$42949(19)$	$20051(32)$	$20724(25)$	
$\mathrm{O}(4)$	$37272(18)$	$28641(25)$	$46765(21)$	
$\mathrm{C}(1)$	$17582(26)$	$25635(28)$	$23867(29)$	
$\mathrm{C}(2)$	$34169(26)$	$24440(29)$	$30305(29)$	
N	$31660(26)$	$3082(31)$	$-13433(30)$	
$\mathrm{C}(3)$	$21620(38)$	$40(45)$	$-29554(41)$	
$\mathrm{H}(1)$	$484(4)$	$281(4)$	$509(4)$	$6 \cdot 3(8)$
$\mathrm{H}(2)$	$399(3)$	$76(4)$	$-159(4)$	$4 \cdot 5(7)$
$\mathrm{H}(3)$	$276(3)$	$97(4)$	$-63(4)$	$3 \cdot 8(7)$
$\mathrm{H}(4)$	$340(4)$	$-69(5)$	$-64(4)$	$6 \cdot 9(9)$
$\mathrm{H}(5)$	$190(3)$	$97(4)$	$-363(4)$	$5 \cdot 9(8)$
$\mathrm{H}(6)$	$133(3)$	$-55(4)$	$-272(4)$	$4 \cdot 6(7)$
$\mathrm{H}(7)$	$256(4)$	$-62(5)$	$-376(6)$	$7 \cdot 3(11)$

Here, and in the two papers which follow (Thomas \& Pramatus, 1975; Thomas \& Renne, 1975), the response to successive methyl substitution of an accompanying NH_{4}^{+}cation is observed.

Two views of the structure are given in Figs. 1 and 2; bond distances and angles in Fig. 3. More extensive data relating to the hydrogen-bond scheme are given in Table 3. As might have been expected from the large number of potential hydrogen-bond donors and acceptors, the hydrogen-bond system is relatively complex. The $\mathrm{HC}_{2} \mathrm{O}_{4}^{-}$ions link by means of asymmetric $\mathrm{O}-\mathrm{H} \cdots \mathrm{O}$ bonds of length $2 \cdot 515$ (2) \AA to form chains along [101]. The dihedral angle between the COO planes within the ion is $1.1(1)^{\circ}$, and the angle between the least-squares planes through the heavy atoms of successive ions in the chains is $39 \cdot 0^{\circ}$. The chains are linked transversely in a three-dimensional network of hydrogen bonds from the $\mathrm{CH}_{3} \mathrm{NH}_{3}^{+}$cation

Table 2. Anisotropic thermal parameters $\left(\times 10^{4}\right)$
The temperature factor is defined as: $\exp \left[-\left(\beta_{11} h^{2}+\ldots+2 \beta_{12} h k+\ldots\right)\right]$. The r.m.s. components of thermal displacement along the principal axes of the thermal vibration ellipsoids ($R_{i} \times 10^{3} \AA$) are also provided for the non-hydrogen atoms.

Fig. 1. A general stereoscopic view of the structure. The labelled atoms represent the chosen asymmetric unit. Thermal ellipsoids for the non-hydrogen atoms here and in Fig. 2 are drawn to include 20% probability.

Fig. 2. A stereoscopic view of the structure showing more clearly the $\mathrm{HC}_{2} \mathrm{O}_{4}^{-}$ion chains which run along [101].

Table 3. Distances and angles associated with the hydrogen-bond scheme around the cation
The suffices imply the following symmetry operations: (a) $\frac{1}{2}+x, \frac{1}{2}-y,-\frac{1}{2}+z$; (b) $\frac{1}{2}-x,-\frac{1}{2}+y, \frac{1}{2}-z ;(c) 1-x,-y,-z$.

$\mathrm{N}-\mathrm{H} \cdots \mathrm{O}$	$\mathrm{N} \cdot \mathrm{O}$	$\mathrm{N}-\mathrm{H}$	$\mathrm{H} \cdots \mathrm{O}$	$\angle \mathrm{N}-\mathrm{H} \cdots \mathrm{O}$
$\mathrm{N}-\mathrm{H}(2) \cdots \mathrm{O}(1)_{a}$	2.883 (3) \AA	0.88 (3) \AA	2.02 (3) \AA	167 (3) ${ }^{\circ}$
$\mathrm{N}-\mathrm{H}(3) \cdots \mathrm{O}(2)$	2.831 (3)	0.88 (3)	1.97 (3)	166 (3)
$\mathrm{N}-\mathrm{H}(3) \cdots \mathrm{O}(3)$	3.014 (3)	0.88 (3)	2.49 (3)*	119 (2)
$\mathrm{N}-\mathrm{H}(4) \cdots \mathrm{O}(1)_{b}$	2.932 (3)	0.99 (3)	2.00 (3)	155 (3)
$\mathrm{N}-\mathrm{H}(4) \cdots \mathrm{O}(4){ }_{0}$	3.020 (3)	$0 \cdot 99$ (3)	2.46 (3)*	115 (2)
$\left\{\mathrm{N}-\mathrm{H}(2) \cdots \mathrm{O}(3)_{c}\right.$	$3 \cdot 100$ (3)	0.88 (3)	$2 \cdot 81$ (3)*	101 (2)
($\mathrm{N}-\mathrm{H}(4) \cdots \mathrm{O}(3){ }_{c}$	$3 \cdot 100$ (3)	$0 \cdot 99$ (3)	2.70 (3)*	105 (2)

* See text.
(see Table 3 and Fig. 3). In the absence of neutrondiffraction determined proton positions, a precise description of the hydrogen-bond scheme is clearly open to speculation. Of the $\mathrm{H} \cdots \mathrm{O}$ contacts indicated by thin lines in Fig. 3, however, only $\mathrm{H}(2) \cdots \mathrm{O}(1)$, $\mathrm{H}(3) \cdots \mathrm{O}(2)$ and $\mathrm{H}(4) \cdots \mathrm{O}(1)$ are likely to fall within the currently accepted upper limit of $2 \cdot 4 \AA$ for a hydrogen-bond interaction distance (Olovsson \& Jönsson, 1975). The other contacts merely represent weak electrostatic interactions.

The keen interest always shown in this work by Professor Ivar Olovsson is hereby gratefully acknowledged, as is the financial support provided by the Swedish Natural Science Research Council.

References

Ahmed, N. A. K., Liminga, R. \& Olovsson, I. (1968). Acta Chem. Scand. 22, 88-96.
Coppens, P. \& Hamilton, W. C. (1970). Acta Cryst. A26, 71-83.
Einspahr, H., Marsh, R. E. \& Donohue, J. (1972). Acta Cryst. B28, 2194-2198.
Hanson, h. P., Herman, F., lea, J. D. \& Skillman, S. (1964). Acta Cryst. 17, 1040-1044.

Long, R. E. (1965). Dissertation. Univ. of California, Los Angeles.
Olovsson, I. \& Jönsson, P.-G. (1975). In The Hydrogen Bond. Recent Developments in Theory and Experiment, edited by P. Schuster, G. Zundel \& C. Sandorfy. Amsterdam: North Holland Publishing Co. In the press. Stewart, R. F., Davidson, E. R. \& Simpson, W. T. (1965). J. Chem. Phys. 42, 3175-3187.

Fig. 3. Bond distances and angles in the structure. Thermal ellipsoids for the non-hydrogen atoms are drawn to include 50% probability. The average standard deviations are $\mathrm{X}-\mathrm{X}: 0.003 \AA, \mathrm{X}-\mathrm{H}: 0.03 \AA, \angle \mathrm{X}-\mathrm{X}-\mathrm{X}: 0.2^{\circ}, \angle \mathrm{X}-\mathrm{X}-\mathrm{H}$ (or $\angle \mathrm{X}-\mathrm{H}-\mathrm{X}): 2^{\circ}$.

Tellgren, R. \& Olovsson, I. (1971). J. Chem. Phys. 54, 127-134.
Thомаs, J. O. (1972). Acta Cryst. B28, 2037-2045.
Thomas, J. O. \& Pramatus, S. (1975). Acta Cryst. B31, 2159-2161.
Thomas, J. O. \& Renne, N. (1975). Acta Cryst. B31, 21612163.

[^0]: * Part CII: Acta Cryst. B31, 1842-1846.

[^1]: \dagger A list of structure factors has been deposited with the British Library Lending Division as Supplementary Publication No. SUP 31015 (6 pp.). Copies may be obtained through The Executive Secretary, International Union of Crystallography, 13 White Friars, Chester CH1 1NZ, England.

